The recent boom in big data processing and democratization of the big data space has been enabled by the fact that most of the concepts originated in the research labs of companies such as Google, Amazon, Yahoo and Facebook are now available as open source. Technologies such as Hadoop, Cassandra let businesses around the world to become more data driven and tap into their massive data feeds to mine valuable insights.
At the same time, we are still at a certain stage of the maturity curve of these new big data technologies and of the entire big data technology stack. Many of the technologies originated from a particular use case and attempts to apply them in a more generic fashion are hitting the limits of their technological foundations. In some areas, there are several competing technologies for the same set of use cases, which increases risks and costs of big data implementations.
We will show how GoodData solves the entire big data pipeline today, starting from raw data feeds all the way up to actionable business insights. All this provided as a hosted multi-tenant environment letting its customers to solve their particular analytical use case or many analytical use cases for thousands of their customers all using the same platform and tools while abstracting them away from the technological details of the big data stack.
At the same time, we are still at a certain stage of the maturity curve of these new big data technologies and of the entire big data technology stack. Many of the technologies originated from a particular use case and attempts to apply them in a more generic fashion are hitting the limits of their technological foundations. In some areas, there are several competing technologies for the same set of use cases, which increases risks and costs of big data implementations.
We will show how GoodData solves the entire big data pipeline today, starting from raw data feeds all the way up to actionable business insights. All this provided as a hosted multi-tenant environment letting its customers to solve their particular analytical use case or many analytical use cases for thousands of their customers all using the same platform and tools while abstracting them away from the technological details of the big data stack.
Comments
Post a Comment